Fish Friday: As water temperatures rise in coral, fish tempers cool down

Researchers have found for the first time evidence that coral bleaching could serve as a trigger for rapid change in reef fish behaviour.

Publishing in Nature Climate Change this week, researchers from Lancaster University and collaborating institutes including the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University show how the iconic butterflyfish, considered to be sensitive indicators of reef health, can offer an early warning sign that reef fish populations are in trouble.

The international team of researchers spent more than 600 hours underwater observing butterflyfish over a two-year period encompassing the unprecedented mass coral bleaching event of 2016.

Led by Dr. Sally Keith of Lancaster University, previously Center for Macroecology, Evolution and Climate, the team examined 17 reefs across the central Indo-Pacific in Japan, the Philippines, Indonesia and Christmas Island (Indian Ocean).

During the initial data collection, the researchers were unaware that the catastrophic bleaching event was on the horizon. Once underway, the researchers realised that this serendipitous ‘natural experiment’ placed them in a unique position to see how fish changed their behaviour in response to large-scale bleaching disturbance.

The team sprang into action to repeat their field observations, collecting a total of 5,259 encounters between individuals of 38 different butterflyfish species. Within a year after the bleaching event it was clear that, although the same number of butterflyfishes continued to reside on the reefs, they were behaving very differently.

We observed that aggressive behaviour had decreased in butterflyfish by an average of two thirds, with the biggest drops observed on reefs where bleaching had killed off the most coral,” said Dr Keith. “We think this is because the most nutritious coral was also the most susceptible to bleaching, so the fish moved from a well-rounded diet to the equivalent of eating only lettuce leaves – it was only enough to survive rather than to thrive.”

Such changes in behaviour may well be the driver behind more obvious changes such as declining numbers of fish individuals and species. The finding has the potential to help explain the mechanism behind population declines in similarly disrupted ecosystems around the world.

Co-author Dr. Erika Woolsey of Stanford University said:

By monitoring behaviour, we might get an early warning sign of bigger things to come.”

The paper “Synchronous behavioural shifts in reef fishes linked to mass coral bleaching” is available at Nature. 

Photo credit: Greg Torda

 

About the author

Peg Fong is also in recovery from newspapers

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.